

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

J. A. del Alamo

Microsystems Technology Laboratories, MIT

Purdue University,

West Lafayette, IN; September 29, 2015

Acknowledgements:

- D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao
- Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung
- Labs at MIT: MTL, EBL

Contents

- 1. Motivation: Moore's Law and MOSFET scaling
- 2. Planar InGaAs MOSFETs
- 3. InGaAs FinFETs
- 4. Vertical nanowire InGaAs MOSFETs
- 5. Conclusions

1. Moore's Law at 50: the end in sight?

THE WALL STREET JOURNAL Moore's Law Is Showing Its Age

The prediction about squeezing transistors onto silicon has been revised again.

OSA: Carly Fiorina Reinvents HP Steven Pinker on Human Bature

Moore's Law is dead. Long live Moore's Law. MOORE'S LAW 50 YEARS

Moore's Law

Moore's Law = exponential increase in transistor density

What if Moore's Law had stopped in 1990?

What if Moore's Law had stopped in 1980?

What if Moore's Law had stopped in 1970?

What if Moore's Law had never happened?

Moore's Law

How far can Si support Moore's Law?

Transistor scaling → Voltage scaling → Performance suffers

Transistor current density (planar MOSFETs):

Transistor performance saturated in recent years

Moore's Law: it's all about MOSFET scaling

1. New device structures:

Enhanced gate control \rightarrow improved scalability

Moore's Law: it's all about MOSFET scaling

2. New materials:

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow InGaAs

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow Ge \rightarrow InGaSb

Future CMOS might involve two different channel materials with <u>two</u> <u>different relaxed lattice constants</u>!

del Alamo, Nature 2011 (updated)

Electron velocity: InGaAs vs. Si

Measurements of electron injection velocity in HEMTs:

- v_{ini}(InGaAs) increases with InAs fraction in channel
- v_{inj} (InGaAs) > $2v_{inj}$ (Si) at less than half V_{DD}
- ~100% ballistic transport at L_g~30 nm

III-V electronics in your pocket!

del Alamo's group at MIT: Current and future activities

N-type InGaAs MOSFETs:

2. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Si,N, encapsulation

Contact

K

reacted

NilnAs

NilnAs S/D

Lee, EDL 2014; Huang, IEDM 2014

High-k

InAs QW channel

Sun, IEDM 2013, 2014

Chang, IEDM 2013

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Jerome Lin

Recess-gate process:

- CMOS-compatible
- Refractory ohmic contacts (W/Mo)
- Extensive use of RIE

Fabrication process

Lin, EDL 2014

- Ohmic contact first, gate last
- Precise control of vertical (~1 nm), lateral (~5 nm) dimensions
- MOS interface exposed late in process

L_g=20 nm InGaAs MOSFET

 $L_g = 20 \text{ nm}, L_{access} = 15 \text{ nm MOSFET}$ \rightarrow most compact III-V MOSFET made at the time

Lin, IEDM 2013

Highest performance InGaAs MOSFET

- Channel: In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3}As
- Gate oxide: HfO₂ (2.5 nm, EOT~ 0.5 nm)

• Record $g_{m,max} = 3.1 \text{ mS/}\mu\text{m}$ at $V_{ds} = 0.5 \text{ V}$

• $R_{on} = 190 \ \Omega.\mu m$

Lin, IEDM 2014

Excess OFF-state current

Transistor fails to turn off:

OFF-state current enhanced with V_{ds}

→ Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

Excess OFF-state current

Impact of channel thickness scaling

- $t_c \downarrow \rightarrow S \downarrow$ but also $g_{m,max} \downarrow$
- Even at t_c=3 nm, L_{g,min}~40 nm
 → planar MOSFET at limit of scaling

Benchmarking: g_m in MOSFETs vs. HEMTs

 g_m of InGaAs MOSFETs vs. HEMTs (any V_{DD}, any L_g):

- Very rapid recent progress in MOSFET g_m
- Best MOSFETs now surpass best HEMTs
- No sign of stalling \rightarrow more progress ahead!

3. InGaAs FinFETs and Trigate MOSFETs

Key enabling technologies:

- BCl₃/SiCl₄/Ar RIE
- digital etch

Zhao, EDL 2014; Vardi, DRC 2014

Interface-state study on sidewalls of InGaAs FinFET

Long-channel MOSFET characteristics (W_f =12~37 nm):

At sidewall: $D_{it,min} \sim 3 \times 10^{12} \text{ eV}^{-1}.\text{cm}^{-2}$

Vardi, DRC 2014

Sub-10 nm fin width InGaAs FinFETs

InGaAs doped channel:

- 50 nm thick
- $N_{\rm D} \sim 10^{18} \, {\rm cm}^{-3}$ •

Oxide: Al₂O₃/HfO₂ (EOT~3 nm)

 $W_f=7 \text{ nm}, L_q=3 \mu \text{m} \text{ MOSFET}$

2-W_=7nm

4. Lateral vs. Vertical Nanowire MOSFETs

5 nm node

Yakimets, TED 2015 Bao, ESSDERC 2014

30% area reduction in 6T-SRAM 19% area reduction in 32 bit multiplier

- Nanowire MOSFET: ultimate scalable transistor
- Vertical NW: uncouples footprint scaling from L_g and L_c scaling \rightarrow power, performance and area gains wrt. Lateral NW

InGaAs Vertical Nanowires on Si by direct growth

InAs NWs on Si by SAE

InAs <u>5 nm</u>Si

Björk, JCG 2012

Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy

Riel, MRS Bull 2014

InGaAs VNW-MOSFETs by *bottom-up* techniques

Many device demonstrations:

Tanaka, APEX 2010

Tomioka, Nature 2012

Persson, DRC 2012

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT

Starting heterostructure:

n+ InGaAs, 70 nm
i InGaAs, 80 nm
n+ InGaAs, 300 nm
n ⁺ : 6×10 ¹⁹ Si doping

Top-down approach: flexible and manufacturable

Zhao, IEDM 2013

Key enabling technology I: RIE by BCl₃/SiCl₄/Ar chemistry

- Sub-30 nm resolution
- Aspect ratio > 8
- Smooth sidewall and surface
- Substrate temperature critical during RIE

Key enabling technology II: digital etch

Self-limiting O_2 plasma oxidation + H_2SO_4 oxide removal

- Planar etching rate: ~1 nm/cycle
- Shrinks NW diameter by 2 nm per cycle
- Unchanged shape
- Reduced roughness

Lin, EDL 2014 Zhao, EDL 2014

Optimized RIE + Digital Etch

Zhao, EDL 2014

- Sub-20 nm resolution
- Aspect ratio = 16, vertical sidewall
- Smooth sidewall and surface

NW-MOSFET I-V characteristics D=30 nm

Single nanowire MOSFET:

- L_{ch}= 80 nm
- 4.5 nm AI_2O_3 (EOT = 2.2 nm)

At V_{DS}=0.5 V:

- g_{m,pk}=280 μS/μm
- R_{on}=759 Ω.μm

Zhao, IEDM 2013

Impact of nanowire diameter

Impact of digital etch

Single nanowire MOSFET: D= 30 nm (final diameter)

Zhao, EDL 2014

Digital etch \rightarrow S \downarrow , g_m $\uparrow \rightarrow$ Better sidewall interface

Benchmarking

- Trade-off: $D \downarrow \rightarrow S \downarrow$ but also $g_m \downarrow$
- Top-down approach as good as bottom-up approach

Relatively poor subthreshold behavior

- Excess I_{off} due to BTBT + Floating BJT
 - \rightarrow Quantization enhances bandgap
 - → Vertical bandgap engineering

Wang, ACSNano 2008

InGaAs low DOS limits current

 \rightarrow Increase in injection velocity with carrier density more than compensates for this

Si Nanowire

V_T sensitivity to nanowire diameter
 → very tight manufacturing tolerance

W_f=8 nm Trigate MOSFETs

Agrawal, TED 2013

Teherani, PhD MIT, 2015

- Asymmetric device behavior: D down ≠ D up
 - \rightarrow more restrictive circuit wiring

• Sensitivity to few defects

D=7 nm, L_g=14 nm (5 nm design rules) \rightarrow S_g=540 nm² D_{it}=2x10¹¹ cm⁻².eV⁻¹ \rightarrow N_{it}~1 eV⁻¹

- Top contact resistance
- Difficult to introduce mechanical stress
- Self-heating
- ...

Conclusions

- 1. Great recent progress on planar, fin and nanowire III-V MOSFETs
- 2. Vertical Nanowire III-V MOSFET: superior scalability and power/performance characteristics
- 3. Vertical Nanowire n- and p-type III-V MOSFET: plausible path for co-integration on Si
- 4. Many demonstrations of InGaAs VNW MOSFETs by bottom-up and top-down approaches
- 5. Many issues to work out:
 - sub-10 nm diameter nanowire fabrication, self-aligned contacts, device asymmetry, Introduction of mechanical stress, V_T control, device variability, BTBT and parasitic HBT gain, trapping, self-heating, reliability, co-integration with p-type VNW on Si, ...

A lot of work ahead but... exciting future for III-V electronics

